Traceable measurements of the electrical parameters of solid-state lighting products

Metrologia, Volume 53, Number 6 (Published 21 November 2016). 
D Zhao, G Rietveld, J-P Braun, F Overney, T Lippert and A Christensen.

Abstract
In order to perform traceable measurements of the electrical parameters of solid-state lighting (SSL) products, it is necessary to technically adequately define the measurement procedures and to identify the relevant uncertainty sources. The present published written standard for SSL products specifies test conditions, but it lacks an explanation of how adequate these test conditions are. More specifically, both an identification of uncertainty sources and a quantitative uncertainty analysis are absent. This paper fills the related gap in the present written standard. New uncertainty sources with respect to conventional lighting sources are determined and their effects are quantified. It shows that for power measurements, the main uncertainty sources are temperature deviation, power supply voltage distortion, and instability of the SSL product. For current RMS measurements, the influence of bandwidth, shunt resistor, power supply source impedance and ac frequency flatness are significant as well. The measurement uncertainty depends not only on the test equipment but is also a function of the characteristics of the device under test (DUT), for example, current harmonics spectrum and input impedance. Therefore, an online calculation tool is provided to help non-electrical experts. Following our procedures, unrealistic uncertainty estimations, unnecessary procedures and expensive equipment can be prevented.

Click here for the publication.

For more information contact Gert Rietveld.