Traceable metrology of soft X-ray to IR optical constants and nanofilms for advanced manufacturing (20IND04 ATMOC)

Projects

Traceable metrology of soft X-ray to IR optical constants and nanofilms for advanced manufacturing (20IND04 ATMOC)

The optics and semiconductor industries use innovative materials and complex nanostructures in their products whose optical properties are difficult to measure and often not accurately known. This project is developping advanced mathematical methods to traceably characterise these materials for wavelength ranges from soft X-ray to IR. This will be achieved by creating a database of optical constants with associated uncertainties for bulk materials and ultra-thin film systems and industrially relevant datasets. This database will provide the opportunity to relevant industries to run simulations and eventually develop new materials with tailored properties. The overall objective of the project is to develop traceable measurement techniques for optical constants of thin-film systems and nanostructures and to use these techniques to support the introduction of an improved optical properties database for industrial users.

Our role

VSL is leading the work package which focuses on traceability of advanced photon-based metrology. The aim of this work package is to develop traceable reflectometers, Mueller ellipsometers, and scatterometers. All the measurement techniques, which are needed to obtain a reliable determination of optical constants in thin films materials, including samples endowed with complex geometries, will be developed and characterised in this work package. VSL scatterometry specialists at length and optics group are working on the scatterometer characterization and traceable measurements of the nanostructures. Data science and modelling group is working on advanced inverse modelling and uncertainty evaluation.

Start date: July 1, 2021
End date: June 30, 2024

Read more about this project here.

“The project has received funding from the European Partnership on Metrology, co-financed by European Union Horizon Europe Research and Innovation Programme and from the Participating States.”

Would you like to know more about this subject?

Our experts are happy to help.

Lauryna Siaudinyte
Principal Scientist Length – Optics

Projects

Our expertise in practice

Read more about our projects.

Sensor engineering for vibration isolation in Einstein Telescope

Project SENVIDET contributes to the development of the Einstein Telescope through innovation in the field of sensors for vibration isolation.

Traceable machine vision systems for digital industrial applications

Machine vision systems are crucial to many high-value industries, where Europe is globally competitive, and to the EU objectives for digital transformation and the Green Deal.

Digital metrological twins for advanced manufacturing

Supporting advanced production processes using so-called Digital Metrology Twins (D-MTs), where VSL will mainly work on a digital representation of tactile measurements on the CMM.

Virtual experiments and digital twins (ViDiT)

Virtual experiments and digital twins are key enabling technologies to achieve and realise European strategic policies devoted to sustainability and digitalisation within the complex framework of Industry 4.0 and the European Green Deal.

Metrology for Aerosol Optical Properties (MAPP 19ENV04)

The goal of this project is to enable the Si-traceable measurements of column-integrated aerosol optical properties retrieved from the passive remote sensing of atmosphere using solar and lunar measurements.

RMG Research on optical microscopes (Research Mobility Grant 20FUN02-RMG1)

This Research mobility grant together with EMPIR project 20FUN02 POLight aims to enhance multiple optical measurement methods for use in nano-metrology.

Pushing boundaries of nano-dimensional metrology by light (20FUN02 POLight)

This project addresses this issue by developing novel methods to help bridge the metrology gap and in turn foster KET innovation. More specifically, this project will push the boundaries of optical measurement methods by realising a new generation of optical metrology systems, with unprecedented performances in terms of spatial resolution, traceability, reliability and robustness.

Traceable industrial 3D roughness and dimensional using optical 3D microscopy and optical distance sensors (20IND07 TracOptic)

To remain competitive, European manufacturers strive to make constant improvements in their manufacturing processes. The surface topography of a component part can have a profound effect on the function of the part. This is true across a wide range of industries (such as precision engineering, automotive and medical).

Standardisation of measurements for DC electricity grids (20NRM03 DC grids)

The shift towards more renewable and sustainable technologies has increased the attractiveness of DC grids as an alternative or addition to the existing AC grids

Green Transport Delta – Hydrogen

The main goal of the Green Transport Delta – Hydrogen project is to develop three hydrogen technologies: hydrogen combustion engines, hydrogen fuel cells, and next generation technology for hydrogen refueling infrastructure.