High throughput metrology for nanowire energy (NanoWires)

Projects

High throughput metrology for nanowire energy (NanoWires)

Energy harvesting from renewable sources (solar, heat and movement) is a prominent solution to create small amounts of electrical energy in areas of difficult access, and energy harvesting devices have much potential to address our world energy problems. Nanowire (NW) based energy harvesting systems have achieved encouraging progress, but due to nanometre (nm) dimensions of the wires and large size (m2) of the devices, they also bring challenges for testing and characterisation. Average properties of energy harvesting devices can be measured, but a quantitative link and correlation between the performance of single NWs and that of the overall device is lacking. This project aims to develop reliable and high throughput metrology for the quality control of NW energy harvesting systems. Over the past two decades, major efforts have been made to develop energy harvesting devices from macro- and microscales down to nanoscale. Due to their extremely small physical size and high surface to volume ratio, NW based energy harvesting systems, including photovoltaic solar cells, thermoelectrical and electromechanical energy nanogenerators, have gained tremendous interest and encouraging progress has been achieved. In particular, it has been confirmed that the efficiency of NW solar cells can be enhanced from 17.8 % currently to its ultimate limit of 46.7 % by means of nanophotonic engineering. While novel designs and materials for various energy harvesting devices indeed offer many potential benefits, they also bring challenges for testing and characterisation. For example, the quantitative link and correlation between the performance of a single NW and that of the overall device is still missing. Moreover, no reliable metrology for large area NW arrays (from cm2 to several m2) with diameters between 50 nm and 1 µm is currently available. Quality control of these energy harvesting systems is therefore highly challenging, and high throughput metrology is necessary, which requires the development of traceable measurement methods and models for the characterisation of NW energy harvesters, solar cells and devices.

Our role
This project focuses the development of traceable measurement methods for high throughput nanodimensional characterisation of NW energy harvesters. VSL is leading a work package responsible for the high throughput nanodimensional characterisation of NWs. Newly fabricated nanowires are being measured by length and optics group with AFM and scatterometry techniques.

Start date: September 1, 2020
End date: August 31, 2023

Would you like to know more about this project?

Our experts are happy to help.

Lauryna Siaudinyté
Principal Scientist Length Optics

Projects

Our expertise in practice

Read more about our projects.

Virtual experiments and digital twins (ViDiT)

Virtual experiments and digital twins are key enabling technologies to achieve and realise European strategic policies devoted to sustainability and digitalisation within the complex framework of Industry 4.0 and the European Green Deal.

Metrology for Aerosol Optical Properties (MAPP 19ENV04)

The goal of this project is to enable the Si-traceable measurements of column-integrated aerosol optical properties retrieved from the passive remote sensing of atmosphere using solar and lunar measurements.

RMG Research on optical microscopes (Research Mobility Grant 20FUN02-RMG1)

This Research mobility grant together with EMPIR project 20FUN02 POLight aims to enhance multiple optical measurement methods for use in nano-metrology.

Pushing boundaries of nano-dimensional metrology by light (20FUN02 POLight)

This project addresses this issue by developing novel methods to help bridge the metrology gap and in turn foster KET innovation. More specifically, this project will push the boundaries of optical measurement methods by realising a new generation of optical metrology systems, with unprecedented performances in terms of spatial resolution, traceability, reliability and robustness.

Traceable metrology of soft X-ray to IR optical constants and nanofilms for advanced manufacturing (20IND04 ATMOC)

The optics and semiconductor industries use innovative materials and complex nanostructures in their products whose optical properties are difficult to measure and often not accurately known. This project is developping advanced mathematical methods to traceably characterise these materials for wavelength ranges from soft X-ray to IR.

Traceable industrial 3D roughness and dimensional using optical 3D microscopy and optical distance sensors (20IND07 TracOptic)

To remain competitive, European manufacturers strive to make constant improvements in their manufacturing processes. The surface topography of a component part can have a profound effect on the function of the part. This is true across a wide range of industries (such as precision engineering, automotive and medical).

Standardisation of measurements for DC electricity grids (20NRM03 DC grids)

The shift towards more renewable and sustainable technologies has increased the attractiveness of DC grids as an alternative or addition to the existing AC grids

Green Transport Delta – Hydrogen

The main goal of the Green Transport Delta – Hydrogen project is to develop three hydrogen technologies: hydrogen combustion engines, hydrogen fuel cells, and next generation technology for hydrogen refueling infrastructure.

Metrology for traceable protocols for elemental and oxidised mercury concentrations (19NRM03 SI-Hg)

Creating a metrological framework to support growing demands for ‘green’ hydrogen as part of the EU’s climate strategy.

Metrology for temporal light modulation

LED-based lighting contributes to energy saving and the reduction of the environmental impact of lighting. However, LED lamps can show fluctuations in the light output known as temporal light modulation (TLM)